3.825 \(\int \frac{x^6}{\sqrt{a+b x^4}} \, dx\)

Optimal. Leaf size=237 \[ -\frac{3 a^{5/4} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{10 b^{7/4} \sqrt{a+b x^4}}+\frac{3 a^{5/4} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{5 b^{7/4} \sqrt{a+b x^4}}-\frac{3 a x \sqrt{a+b x^4}}{5 b^{3/2} \left (\sqrt{a}+\sqrt{b} x^2\right )}+\frac{x^3 \sqrt{a+b x^4}}{5 b} \]

[Out]

(x^3*Sqrt[a + b*x^4])/(5*b) - (3*a*x*Sqrt[a + b*x^4])/(5*b^(3/2)*(Sqrt[a] + Sqrt
[b]*x^2)) + (3*a^(5/4)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[
b]*x^2)^2]*EllipticE[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(5*b^(7/4)*Sqrt[a + b*
x^4]) - (3*a^(5/4)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x
^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(10*b^(7/4)*Sqrt[a + b*x^4
])

_______________________________________________________________________________________

Rubi [A]  time = 0.192352, antiderivative size = 237, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.267 \[ -\frac{3 a^{5/4} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{10 b^{7/4} \sqrt{a+b x^4}}+\frac{3 a^{5/4} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{5 b^{7/4} \sqrt{a+b x^4}}-\frac{3 a x \sqrt{a+b x^4}}{5 b^{3/2} \left (\sqrt{a}+\sqrt{b} x^2\right )}+\frac{x^3 \sqrt{a+b x^4}}{5 b} \]

Antiderivative was successfully verified.

[In]  Int[x^6/Sqrt[a + b*x^4],x]

[Out]

(x^3*Sqrt[a + b*x^4])/(5*b) - (3*a*x*Sqrt[a + b*x^4])/(5*b^(3/2)*(Sqrt[a] + Sqrt
[b]*x^2)) + (3*a^(5/4)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[
b]*x^2)^2]*EllipticE[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(5*b^(7/4)*Sqrt[a + b*
x^4]) - (3*a^(5/4)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x
^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(10*b^(7/4)*Sqrt[a + b*x^4
])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 22.8382, size = 214, normalized size = 0.9 \[ \frac{3 a^{\frac{5}{4}} \sqrt{\frac{a + b x^{4}}{\left (\sqrt{a} + \sqrt{b} x^{2}\right )^{2}}} \left (\sqrt{a} + \sqrt{b} x^{2}\right ) E\left (2 \operatorname{atan}{\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}} \right )}\middle | \frac{1}{2}\right )}{5 b^{\frac{7}{4}} \sqrt{a + b x^{4}}} - \frac{3 a^{\frac{5}{4}} \sqrt{\frac{a + b x^{4}}{\left (\sqrt{a} + \sqrt{b} x^{2}\right )^{2}}} \left (\sqrt{a} + \sqrt{b} x^{2}\right ) F\left (2 \operatorname{atan}{\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}} \right )}\middle | \frac{1}{2}\right )}{10 b^{\frac{7}{4}} \sqrt{a + b x^{4}}} - \frac{3 a x \sqrt{a + b x^{4}}}{5 b^{\frac{3}{2}} \left (\sqrt{a} + \sqrt{b} x^{2}\right )} + \frac{x^{3} \sqrt{a + b x^{4}}}{5 b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(x**6/(b*x**4+a)**(1/2),x)

[Out]

3*a**(5/4)*sqrt((a + b*x**4)/(sqrt(a) + sqrt(b)*x**2)**2)*(sqrt(a) + sqrt(b)*x**
2)*elliptic_e(2*atan(b**(1/4)*x/a**(1/4)), 1/2)/(5*b**(7/4)*sqrt(a + b*x**4)) -
3*a**(5/4)*sqrt((a + b*x**4)/(sqrt(a) + sqrt(b)*x**2)**2)*(sqrt(a) + sqrt(b)*x**
2)*elliptic_f(2*atan(b**(1/4)*x/a**(1/4)), 1/2)/(10*b**(7/4)*sqrt(a + b*x**4)) -
 3*a*x*sqrt(a + b*x**4)/(5*b**(3/2)*(sqrt(a) + sqrt(b)*x**2)) + x**3*sqrt(a + b*
x**4)/(5*b)

_______________________________________________________________________________________

Mathematica [C]  time = 0.225525, size = 168, normalized size = 0.71 \[ \frac{x^3 \sqrt{a+b x^4}}{5 b}-\frac{3 a^{3/2} \sqrt{1-\frac{i \sqrt{b} x^2}{\sqrt{a}}} \sqrt{1+\frac{i \sqrt{b} x^2}{\sqrt{a}}} \left (E\left (\left .i \sinh ^{-1}\left (\sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} x\right )\right |-1\right )-F\left (\left .i \sinh ^{-1}\left (\sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} x\right )\right |-1\right )\right )}{5 b^{3/2} \sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} \sqrt{a+b x^4}} \]

Antiderivative was successfully verified.

[In]  Integrate[x^6/Sqrt[a + b*x^4],x]

[Out]

(x^3*Sqrt[a + b*x^4])/(5*b) - (3*a^(3/2)*Sqrt[1 - (I*Sqrt[b]*x^2)/Sqrt[a]]*Sqrt[
1 + (I*Sqrt[b]*x^2)/Sqrt[a]]*(EllipticE[I*ArcSinh[Sqrt[(I*Sqrt[b])/Sqrt[a]]*x],
-1] - EllipticF[I*ArcSinh[Sqrt[(I*Sqrt[b])/Sqrt[a]]*x], -1]))/(5*Sqrt[(I*Sqrt[b]
)/Sqrt[a]]*b^(3/2)*Sqrt[a + b*x^4])

_______________________________________________________________________________________

Maple [C]  time = 0.011, size = 115, normalized size = 0.5 \[{\frac{{x}^{3}}{5\,b}\sqrt{b{x}^{4}+a}}-{{\frac{3\,i}{5}}{a}^{{\frac{3}{2}}}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}} \left ({\it EllipticF} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ) -{\it EllipticE} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ) \right ){b}^{-{\frac{3}{2}}}{\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(x^6/(b*x^4+a)^(1/2),x)

[Out]

1/5*x^3*(b*x^4+a)^(1/2)/b-3/5*I*a^(3/2)/b^(3/2)/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a
^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*(Ellip
ticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I)-EllipticE(x*(I/a^(1/2)*b^(1/2))^(1/2),I))

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{x^{6}}{\sqrt{b x^{4} + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^6/sqrt(b*x^4 + a),x, algorithm="maxima")

[Out]

integrate(x^6/sqrt(b*x^4 + a), x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{x^{6}}{\sqrt{b x^{4} + a}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^6/sqrt(b*x^4 + a),x, algorithm="fricas")

[Out]

integral(x^6/sqrt(b*x^4 + a), x)

_______________________________________________________________________________________

Sympy [A]  time = 2.64426, size = 37, normalized size = 0.16 \[ \frac{x^{7} \Gamma \left (\frac{7}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{2}, \frac{7}{4} \\ \frac{11}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 \sqrt{a} \Gamma \left (\frac{11}{4}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x**6/(b*x**4+a)**(1/2),x)

[Out]

x**7*gamma(7/4)*hyper((1/2, 7/4), (11/4,), b*x**4*exp_polar(I*pi)/a)/(4*sqrt(a)*
gamma(11/4))

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{x^{6}}{\sqrt{b x^{4} + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^6/sqrt(b*x^4 + a),x, algorithm="giac")

[Out]

integrate(x^6/sqrt(b*x^4 + a), x)